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Morphology and the Harappan

Gods

Richard Sproat, Steve Farmer

1.1 Introduction

Kimmo Koskenniemi has done work in a variety of areas having to do
with the computational modeling of language, including computational
syntax, information retrieval and, most famously, computational mor-
phology. It is this latter area, and one other perhaps less well-known
one, that are the topic of this chapter.

Koskenniemi’s thesis work on the computational modeling of Finnish
morphology (Koskenniemi, 1983) is certainly the best-known work in
the field of computational morphology, and it has inspired a wealth of
derivative work, including practical working morphological analyzers
for a wide variety of languages.

One of his lesser known contributions is in the area of decipherment,
namely his collaboration with the Finnish Indologist Asko Parpola on
the computational analysis of the inscriptions of the Indus Valley.

In this chapter we will review these two contributions and their im-
portance for their respective fields. Note that the first author of this
paper may possibly be the only other person in the world who, like
Koskenniemi, has done work on these two topics. The second author is
the first author’s collaborator on the Indus Valley work.

1.2 Koskenniemi’s Contributions in Morphology

Koskenniemi’s development of Two-Level Morphology can be thought
of as a fortuitous accident of history. It had been known since C.
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Douglas Johnson’s PhD thesis 1972 that “context-sensitive” rewrite
rules of the kind that had become familiar in generative phonology
described regular relations and could thus be implemented using finite-
state transducers (FSTs). By the late 1970’s Ron Kaplan and Martin
Kay at Xerox PARC were developing algorithms for the automatic com-
pilation of FSTs from rewrite rules in a format that would be familiar
to linguists, namely:

φ → ψ/λ ρ (1.1)

Here, φ, ψ, λ and ρ could be arbitrary regular expressions. Furthermore,
since regular relations are closed under composition, this meant that
one could write a series of ordered rules of the kind found in SPE
(Chomsky and Halle, 1968), compile each of the rules into a transducer
and then compose the entire series of rules together to form a single
transducer representing the entire rule system. Kaplan and Kay finally
published their algorithm many years later (Kaplan and Kay, 1994),
and there has been subsequent work on a simpler and more efficient
algorithm in Mohri and Sproat (1996).

But in the late 1970’s and early 1980’s there was just one problem:
computers were simply not fast enough, nor did they have enough mem-
ory to compile rule systems of any serious complexity. Indeed complex
rule systems of several tens of rules over a reasonable-sized alphabet
(say 100 symbols) can easily produce FST’s with several hundred thou-
sand states with a similar number of arcs, with a total memory footprint
of several megabytes. While any PC today could easily handle this, this
was simply not viable around 1980.1

1.2.1 The two-level morphological system

Koskenniemi therefore proposed an alternative, one that still used
transducers but constructed them and used them in a different way.
First of all, he eschewed rule compilation entirely, instead constructing
his transducers by hand. This is not quite as bad as it seems, since he
proposed various ergonomically reasonable devices, such as the use of
a “wildcard” (‘=’ in his notation) that would match any character not
already mentioned: thus for any state, one could specify transitions to
other states on designated symbol pairs, and have a default transition
on ‘=:=’ if none of the other specifications matched. This allowed the
FSTs in Koskenniemi’s description to be quite compact.

Second, rather than deal with rule composition, he came up with a
novel alternative: the FSTs would run in parallel, each of them reading
characters from the surface tape (the form of the word that appears in

1Recall Bill Gates’ 1981 statement that “640k ought to be enough for anybody.”
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text) and the lexical tape (the form of the word that is entered in the
lexicon, along with its morphosyntactic features). This presents a theo-
retical problem though, because a system of this kind is implementing
intersection of FSTs and hence regular relations, whereas it is known
that regular relations are not generally closed under intersection (Ka-
plan and Kay, 1994); however so long as the number of insertions or
deletions is bounded, it can be shown that regular relations are closed
even under intersection (Roark and Sproat, 2006), and in effect this is
what Koskenniemi’s system is doing when it constrains the transducers
from getting too out of sync.

Koskenniemi’s implementation of the lexical entries themselves, as
well as affixes was less of an innovation. For the lexicons, he used the
idea of letter tries, from Knuth (1973). To handle morphological de-
composition he used the notion of continuation lexicon where a lexical
entry would be annotated with information on what other lexical entries
(usually affixes) could follow it. But this is just an implementation of a
finite-state grammar and in fact Koskenniemi’s trie-plus-continuation-
lexicon approach is formally equivalent to representing the lexicons as
finite-state acceptors (FSAs).

In Koskenniemi’s original formulation, the input (surface) word
would be matched against the lexicon by starting at a root lexicon and
then matching the characters of the input against the characters in the
lexicon trie, modulated by the parallel phonological transducers, which
Koskenniemi picturesquely describes as viewing the lexicon through
a slightly distorting lens. A present day two-level system would, of
course, implement the following set of finite-state operations, where I
is the input word Ri are the rule transducers, and L is a lexical FSA:

I ◦
⋂

i

(Ri) ◦ L (1.2)

1.2.2 Two-Level Rules

The other innovation of Koskenniemi’s approach was his formalization
of two-level rewrite rules; again, he did not provide a compiler for these
rules, but the rules served to specify the semantics underlying the trans-
ducers that he built by hand. All rules in his system followed a template
in that they were all of the following form:

CorrespondencePair operator LeftContext RightContext

That is, the rules specified conditions for the occurrence of a corre-
spondence pair — a pairing of a lexical and a surface symbol (one of
which might be empty, modeling deletion or insertion — in a given left
or right context. The contexts could be regular expressions, but the
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correspondence pair was a single pair of symbols, and thus was not as
general as the φ → ψ formulation from Kaplan and Kay (1994).

Koskenniemi’s rules came in four flavors, determined by the partic-
ular operator used. These were:

Exclusion rule a:b /⇐ LC RC
Context restriction rule a:b ⇒ LC RC
Surface coercion rule a:b ⇐ LC RC
Composite rule a:b ⇔ LC RC

The interpretation of these was as follows:

. Exclusion rule: a cannot be realized as b in the stated context.

. Context restriction rule: a can only be realized as b in the stated
context (i.e. nowhere else)

. Surface coercion rule: a must be realized as b in the stated con-
text.

. Composite rule: a is realized as b obligatorily and only in the
stated context.

In many ways the semantics of Koskenniemi’s rules was better de-
fined than the ones that had previously been used in generative phonol-
ogy. For one thing, each rule type specified a direct relation between the
underlying and surface forms, something that was not possible within
generative phonology due to the arbitrary number of ordered rewrite
rules: in general, in generative phonology there was no way to know
how a given lexical form would surface, short of applying all rules in
the specified order and seeing what the outcome was. Koskenniemi’s
rules, in contrast, specified the relation directly.

Ignoring for the moment that traditional generative phonological
rules were not two-level, one can ask which of Koskenniemi’s rules cor-
respond to the rule types (basically just obligatory or optional rewrite
rules) of generative phonology. In fact only the surface coercion rule

has a direct counterpart: it corresponds pretty directly to an obliga-
tory rewrite rule. All the other two-level rule types depend upon global
knowledge of the system. Thus the context restriction rule is equiv-
alent to a situation in a traditional generative account where there is
but one optional rule that changes a into b; but note that this is a prop-
erty of the system, not of a specific rule. The composite rule, which
is just a combination of context restriction and surface coercion is
similar, but in this case the unique rule changing a into b is obligatory.
Note that since one could write, say, a context restriction rule that
relates a to b in one environment, and then also write another context

restriction rule that allows a to become b in another environment,
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it is perfectly possible in Koskenniemi’s system to write an inconsis-
tent grammar. A lot of the work in designing later two-level systems
involved writing debuggers that would catch these kinds of conflicts.
Finally, the exclusion rule is again global in nature: it is equivalent
to the situation in a traditional generative grammar where there is no
rule that relates a to b in the specified environment.

But really, Koskenniemi’s rules can best be thought of as involving
constraints on correspondence pairs. Constraints were virtually non-
existent as a device in early generative phonology, but have since be-
come quite popular in various theories of phonology including Declar-
ative Phonology (Coleman, 1992), One-Level Phonology (Bird and El-
lison, 1994) and Optimality Theory (Prince and Smolensky, 1993).

1.2.3 Koskenniemi’s impact on computational morphology

Koskenniemi’s two-level morphology was remarkable in another way: in
the early 1980’s most computational linguistic systems were toys. This
included parsers, which were usually fairly restricted in the kinds of
sentences they could handle; dialog systems, which only worked in very
limited domains; and models of language acquisition, which were only
designed to learn simple grammatical constraints. In contrast, Kosken-
niemi’s implementation of Finnish morphology was quite real in that
it handled a large portion of inflected words that one found in real
Finnish text. To some extent this reflects the fact that it is easier to
get a quite complete coverage of morphology in any language than it
is to have a similar coverage of syntax, let alone dialog. But it also
reflects Koskenniemi’s own decision to develop a full-fledged system,
rather than present a mere “proof of concept” of his ideas.

While two-level morphology was originally motivated by the difficul-
ties, at the time, with Kaplan and Kay’s approach to cascaded rewrite
rules, the model quickly took on a life of its own. Koskenniemi took
it to be a substantive theoretical claim that only two levels of analysis
were necessary, a claim that was fairly radical in its day (at least in
contrast to generative phonology), but which has since been superseded
by claims that only one-level is needed (e.g., Bird and Ellison (1994)).

Nevertheless, practical considerations of developing morphological
analyzers have led people to not rely wholly on the two-level assump-
tion. Since transducers can be combined both by composition (under
which they are always closed) and by intersection (under which they are
closed under certain conditions) combinations of these two operations
may be used in any given system; see, e.g., Karttunen et al. (1992). In-
deed, one of the beauties of finite-state techniques is that the calculus of
the combination of regular languages and relations is expressive enough
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that one can develop modules of systems without regard to following
any particular overall design: thus, for handling certain phenomena it
may be more convenient to think in terms of a two-level system. For
others, it may be easier to write cascaded rules. No matter: the two
components can be combined as if one had built them both in one way
or the other.

While Koskenniemi certainly did not invent finite-state approaches
to morphology and phonology, he was the first to develop a system that
worked fully using finite-state techniques, and he is thus to be given
much credit for bringing the field of finite-state morphology to maturity,
and building the way for the renaissance of finite-state approaches to
language and speech that has developed over the past couple of decades.

1.3 Koskenniemi’s Contributions to Indus Valley

Studies

Koskenniemi’s other contribution of interest here is his collaboration
with the Indologist Asko Parpola in attempts to decipher the so-called
Indus script (Koskenniemi and Parpola, 1980, 1982, Koskenniemi, 1981,
Parpola, 1994). One of the products of that collaboration was the de-
velopment of a concordance of Indus inscriptions (Koskenniemi and
Parpola, 1979, 1982) that expanded on earlier work by Parpola and
Koskenniemi’s brother Seppo. Later on we will say a bit about that
concordance, whose structure relies on the traditional assumption that
the Indus symbols were part of a writing system, which we have re-
cently challenged on a variety of statistical and non-statistical grounds
(Farmer et al., 2004). Of deeper interest in the context of this pa-
per is Koskenniemi’s work on the automatic derivation of groupings
among Indus symbols, which (on the linguistic assumption) he links to
putative syntactic structures and to the detection in the inscriptions
of possible homographs. Koskenniemi uses two main methods to dis-
tinguish sign groupings in the inscriptions. The first he attributes to
S. Koskenniemi et al. 1970. The method, as Kimmo Koskenniemi de-
scribes it, involves comparing the actual counts of paired symbols with
the expected counts based on the general frequencies of each sign. Sym-
bol pairs with higher ratios are assumed to reflect underlying syntactic
regularities in the system. This measure is related to pointwise mutual
information (Shannon, 1948), which has been used extensively in com-
putational linguistics for computing associations between words; for
example, the measure was used in (Sproat and Shih, 1990) for the un-
supervised discovery of word boundaries in Chinese texts and for pars-
ing more generally in (Magerman and Marcus, 1990). Unfortunately,
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mutual information does not provide a solid foundation for syntactic
analysis since high mutual information between terms is more often
indicative of semantic association than syntactic constituency. While
strong syntactic associations are sometimes found with closely linked
terms, strong semantic associations also show up between terms that
have no necessary syntactic relationship, e.g. between the English words
doctor and nurse. Moreover, strong pairwise associations also show up
often in non-linguistic strings, as witnessed in mathematical equations
or chains of non-linguistic symbols associated with pantheons of gods
(see Farmer et al. (2004)), that have nothing to do with linguistic syn-
tax.

Koskenniemi’s other method ultimately derives from the work of
Zellig Harris (Harris, 1951). Starting from the left or right end of a
sequence of glyphs, one counts, for each initial substring, the num-
ber of other texts that share the same beginning or end. One expects
the number of possible next signs to rise at a major syntactic bound-
ary, since there are fewer restrictions across constituents than within
constituents. Harris originally used essentially the same measure to de-
termine the location of morph boundaries in unsegmented sequences
of text. Koskenniemi argues that the two methods — the mutual-
information-like method and the Harrisian method — produce similar
syntactic analyses.

Koskenniemi also associates with Harris his method for detecting po-
tential homographs. As Koskenniemi correctly notes, early writing sys-
tems were replete with homography, so it is reasonable to expect that
Indus signs (based again on the assumption that they are linguistic)
would also contain many homographs. The discovery of homographs is
one of the trickiest aspects of decipherment. Based on what we know
of the extensive homography of early scripts, we certainly cannot as-
sume that a particular sign always has the same value; but at the same
time we cannot simply assign homographs at will since such a strategy
permits an unlimited number of potential decipherments of a given in-
scription with no obvious way to choose between them. Many of the
well over 100 claimed decipherments that have been proposed in the
past of the so-called Indus script have been plagued by this problem.
The result is that a robust, replicable method for detecting potential
homographs would be a useful tool in helping to select between po-
tential linguistic readings of an undeciphered script. The method that
Koskenniemi proposes to deal with this problem can be summarized
as follows: consider symbols y and z, which occur in distinct linguis-
tic environments, e.g. in two differing sets of preceding and following
glyph environments. Now suppose one finds a glyph x that occurs in



10 / Richard Sproat, Steve Farmer

both of these environments: since x behaves in some cases like y and
inother cases like z, x is a reasonable candidate for being a homograph.
In other words, it is possible in this context that x is being used to
represent two distinct linguistic entities. To provide an example from
English, consider the words carp and violin. If one examines a corpus
of English, one will likely find that the linguistic environments in which
the word carp shows up have little in common with those that include
the word violin. Now consider the word bass. If one looks again at the
corpus, one will find that bass occurs both in environments similar to
those in which carp appears and in environments similar to those in
which we find violin. From this one can guess that bass is a potential
homograph with two very different senses — in this case involving fish
and musical instruments. A more sophisticated approach to automatic
ambiguity detection along the lines of what Koskenniemi proposed, fol-
lowing Harris, was explored in (Sproat and van Santen, 1998).

The two problems that Koskenniemi addressed — the automatic
detection of syntactic structures and of potential homographs — are
topics that remain at the forefront of computational linguistics, as re-
searchers search for more powerful unsupervised means of analyzing
linguistric data. Unfortunately, Koskenniemi’s proposed methods have
not had a major impact on Indus research, not due necessarily to any
formal flaws in those methods, but instead, as suggested earlier, since
those methods overlay the deeper, unexamined, assumption that Indus
inscriptions encoded natural language. Non-linguistic sign systems of-
ten display levels of formal structure no less extreme than those seen in
linguistic systems: witness the complex syntactic structures in mathe-
matical expressions, or the recurrent sign groups that regularly show
up in non-linguistic sign systems in the ancient Near East (Farmer
et al., 2004). It has also long been known that non-linguistic signs
display semantic “multivocality” that can be loosely pictured as the
non-linguistic equivalent of homography in scripts. The upshot is that
while Koskenniemi’s methods may in fact identify genuine systematic
relationships between symbols in Indus inscriptions, relationships of
this type are not unique to writing but show up as well in a much
wider class of sign systems. Since ethnographical studies suggest that
the intended sense of nonlinguistic symbols are typically less “fixed”
than those in written systems (cf., e.g., Barth (1987)), this finding also
raises questions about the utility of the types of concordances of In-
dus inscriptions to which Koskenniemi has contributed, which overly
standardize signs in ways that may mask important visual clues to the
original sense of those signs, which may have differed widely in different
Indus sites and periods as well as on diverse artifact types.
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It is noteworthy that no unsupervised means has ever been proposed
to distinguish linguistic from non-linguistic strings. It would be inter-
esting to see whether the methods that Koskenniemi introduced in his
studies of Indus signs might be applied to this interesting and still unde-
veloped area of research, grounded perhaps on systematic comparison
of the specific types of regularities found in a significant cross-section
of different classes of linguistic and non-linguistic sign systems. Those
methods may also have possible applications in future studies of In-
dus symbols that are not tied to the traditional assumption, which is
now being seriously challenged, that Indus inscriptions systematically
encoded speech.

1.4 Summary

Koskenniemi has made many contributions to many areas in compu-
tational linguistics. This paper has reviewed what is certainly his best
known contribution — two-level computational morphology, and what
may well be his least-known contributions, namely his work on the
Indus Valley corpus. Two-level morphology has, of course, been highly
influential and is still used despite the fact that one of the main motiva-
tions for this approach (the processing power of early 1980’s computers)
is no longer relevant. Koskenniemi’s work on the Indus Valley corpus
is also interesting since, although we believe there is compelling evi-
dence that the Indus Valley “script” did not encode a language, he was
investigating issues — the automatic discovery of structure, and the
automatic discovery of senses — which are very much relevant today.
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